
Journal of Statistical Physics, Vol. 43, Nos. 5/6, i986

G F l l

J. Beetem, ~ M. Denneau, ~ and D. Weingarten ~

GF11 is a parallel processor currently under construction at the IBM Yorktown
Research Center. The machine incorporates 576 floating-point boards. Each
board has space for 2 x 106 bytes of memory and is capable of 2 x 107 floating
point operations per second, given the total machine a peak of 1.15 x 109 bytes
of memory and 1.15 x 101~ floating point operations per second. The floating-
point processors are interconnected by a dynamically reconfigurable switching
network. At each machine cycle any of 1024 preselected permutations of data
can be realized among the processors. The main intended application of GF11 is
a class of calculations arising from quantum chormodynamics.

KEY WORDS: Parallel processing; super computer; quantum
chromodynamics; single instruction multiple data (SIMD); Benes network.

1. I N T R O D U C T I O N

G F l l is a large parallel processor presently under construction at IBM
Yorktown Heights. G F l l is intended primarily for numerical work with
lattice QCD. We would like, for example, to do a fairly realistic calculation
of hadron masses including the full effect of quark vacuum polarization. At
this point we still don't know how much computation that would require.
A possible guess is around 3 x 10 ~7 arithmetic operations. On one of the
present generation of vector machines running, say, at 100 million foating
point operations per second (100 Mflops) this calculation would take 100
years. G F l l has a peak rate of 11.5 billion floating point operations per
second (l t .5Gflops) and will sustain about 10Gflops on QCD
calculations. At this rate 3 x 1017 operations will take 1 year.

GF11 does not incorporate any special purpose hardware restricted to
QCD. The architecture is actually fairly flexible. We can probably sustain
more than two or so Gflops on a wide range of problems in science and
engineering. For an earlier discussion of GFI 1 see Ref. 1.

t IBM, T. J. Watson Research Center, Yorktown Heights, New York 10598.

1171

0022-4715/86/0600-1171505.00/0 �9 1986 Plenum Publishing Corporation
822/43/5-6-29

1172 Beetem, Denneau, and Weingarten

The remainder of this paper is organized as follows:

1. We begin with an overview of GF11. Then each of its component parts
will be considered in greater detail.

2. The floating point processor boards are described.

3. We consider a switch through which they communicate.

4. We present the central controller which orchestrates the machine.

5. The method for generating programs to run on GF11 is described.

6. Finally, we will show how the machine can be applied to a typical
problem in QCD.

2. A R C H I T E C T U R E

The machine's overall structure is shown in Fig. 1. The heart of G F l l
consists of 576 floating point processor boards labeled P1,..., P576. Each
processor is capable of 20 Mflops. At any one time only some of these will
be active computing. The remainder will stand by as spares, to be brought
into action when an active processor fails. A typical division is 512 active
processors and 64 spares. The processors communicate through a three-
stage switching network, labeled Stage 1-3 in Fig. 1. The processors send
data to the switch 1 byte at a time on each of 576 channels and receive
data back 1 byte at a time on another 576 channels. Neither the processor

i
5 7 8 P r o c e B B o r s -]

~ C e n t r a l

Control Z

Memphis Switch
576 -> 576

Permutation Network

o o

~v6

Switch Control

Fig. 1. The overall organization of GF11.

GF11 1173

nor the switch carry on board any microprocessors or programs. The
program is carried in a central control unit which dispatches control
signals to the processors and switch.

Each processor receives an identical set of control signals from the
central controller. Thus GF11 turns out to be a modified version of SIMD
(Single Instruction Multiple Data) architecture. A single instruction stream
in the central controller causes operations on multiple data sets, one in
each of the active processors. An alternative and more popular structure
for a parallel processor is MIMD (Multiple Instruction Multiple Data)
architecture. In a MIMD machine each processor has its own program and
controller. Each processor can then run its own independent and poten-
tially different program. The Columbia and Caltech machines use MIMD
architecture, (2) while the machine planned in Ref. 3 is SIMD.

SIMD architecture, however, has a variety of advantages over MIMD
for our purposes:

1. The machine is simpler to design, debug, program, and understand.

2. Communication can be done more efficiently. All communication can
be scheduled in advance with no conflicts. In a typical MIMD machine
processors communicate, in effect, by making plone calls to each other.
A phone call can result in a busy signal causing a processor to wait.
This can turn out to be a major overhead for MIMD machines.

3. There is only one common instruction memory for the whole machine.
We can therefore easily afford to make it gigantic. This is more than
just a convenience, as will be shown in more detail later.

4. It is very difficult to build a general purpose processor which can keep
up with the 20-Mflops nonvector floating point units in each of our
processors. No microprocessors are capable of this. In G F l l only one
such processor is needed in the central controller. A M I M D machine
would require 576 such units.

So why does anyone ever design a M I M D parallel processor? For the
simple reason that not all problems can be mapped onto a SIMD machine
efficiently. As it turns out, however, a large class of scientific problems, and
the calculations we want to do for QCD in particular, can be made to run
efficiently on a SIMD machine. More on this later.

3. P R O C E S S O R S

The GF11 processor is shown in Fig. 2. Each processor is built around
a 20-Mflops 32-bit floating point unit and a 20-Mips 32-bit integer unit.
The floating point unit consists of two Weitek 32-bit IEEE floating point

1174 Beetem, Denneau, and Weingarten

Fig. 2. The G F l l arithmetic processor.

multipliers and two Weitek 32-bit IEEE floating point arithmetic-logical
units (ALUs). The ALUs can add, subtract, take absolute values, and con-
vert between fixed and floating point formats. Each Weitek unit runs at five
Mflops in pipelined mode. There is no hardware division. Division can be
made a rare operation in the algorithms we are interested in. It can be done
by a table look up followed by two adds and five multiplies.

The integer unit can add, subtract, and perform all logical operations.
There is also a full 32-bit barrel shifter on one input. The integer unit is
intended primarily for bit manipulation needed to prepare floating point
numbers to be used as addresses in table look up. If we wanted, however,
we could also use them just as fixed point calculators. In this case G F l l
can run up to a peak of 11.5 billion instructions per second (11.5 GIPS).

Handling data for the functional units is a three-stage hierarchy of
progressively larger and slower memory units. Communicating directly
with the fixed and floating point units is the fastest and smallest stage, a
256-word register file. Every 50 ns it is capable of four I/O operators. It
sends out two input words to the functional units, collects one result, and
either receives an incoming word from the switch or sends or receives a
word from the next stage of memory, 16,000 words of high-speed static
random access memory. Since the floating point unit and the fixed point
unit, running full tilt, both take two inputs and produce one output every
50 ns, the register file is capable of keeping either fully occupied, but not

GF11 1175

both at once. On any cycle when one is used for input or output, the other
can not perform the same operation.

The static random access memory (SRAM), behind the register file,
can perform one 32-bit I/O operation every 50 ns. This may seem too slow,
by a factor of 3, to keep the functional units satisfied. In scientific
calculations, however, and especially for QCD, there is a large amount of
chaining. Results of one operation are quickly reused as input to a new
operation. The numbers to be reused are kept in the register file and not
sent back to the static memory. For typical QCD calculations there are
between seven and nine operations done for each word of I/O of the
SRAM. The floating point units would be satisfied even if this factor were
only 3.

Finally, behind the SRAM is the largest and slowest chunk of
memory, 512 thousand words of dynamic random access memory
(DRAM). The dynamic memory is divided into two banks of 256 thousand
words which together can provide one I/O operation every 200 ns. The
DRAM will be used, in effect, like a disk. The total memory capacity of the
machine is 256million words of data, equivalently 1 billion bytes
(1 Gbyte).

There are two additional small chunks of memory on each board
which help circumvent some of the limitations of SIMD architecture. A set
of 256 registers carry bases added on to each incoming SRAM address.
Therefore, different processors can work on different data at the same time.
A set of eight condition code bits are set as the result of fixed or floating
point operations. These bits can be used to modulate in a processor-depen-
dent way the effect of incoming instructions. For example, every operation
on a pair of words A and B can be caused, by a zero condition code, to
return just A, and any data store to SRAM can be aborted by a zero con-
dition code.

This is essentially all the internal function of the processor. There are
also four channels of communication between each processor and the rest
of the world. An incoming line carries 256 bits of control signal every 50 ns
to run all the various units. Every 50 ns, 1 byte of data also arrives from
the switch into a buffer register and is available to be grabbed by the
register file. Every 50 ns another byte of data goes off to the switch from
a register filled from the SRAM. Finally there is a single common bus
running through the machine to which each processor can dump data and
from which it can receive data at the rate of one 32-bit word every 50 ns.
This is used to load the machine initially and collect up final results.

1176 Beetem, Denneau, and Weingarten

4. SWITCH

We now consider the switch. The switch is shown in Fig. 3. It consists,
as we have already said, of three stages. Each stage consists of 24 nodes.
Each node has 24 inputs 1 byte wide and 24 outputs 1 byte wide. Thus
24 x 24 = 576 inputs to the first stage and outputs from the third stage of
the full switch. Every 50 ns, each of the 24 outputs of each node receive the
data of one of the 24 inputs. It follows from a result of Benes, (4) that there
is at least one setting of the nodes of the switch which will make the 576
outputs any chosen permutation of the 576 inputs.

Each word of data is sent through the switch in four sequential bytes
and requires, therefore, 200 ns. Every 200 ns the switch setting can be reset
by the central controller. As it turns out, however, the amount of data
required to select a complete setting of all 72 nodes is rather large, 8640
bits, and could not be shipped down to the switch in time. Instead, 1024
different sets of switch setting bits can be stored in memory on board the
switch. The controller chooses one of these every 200 ns by sending down
only a 10-bit address.

So before a job is run, the switch is loaded with 1024 settings selected
to suit the problem. These are kept in place through the course of the
calculation. By choosing these permutations appropriately, we can get the
machine to behave as though there were permanent data paths connecting
each processor to a set of neighbors with a wide range of topologies. For

St~,ge I S h U f f l e g e ~ o r ~ S t a g e 2 B h ~ f f ~ N e t w o r k Sf~c~ge 3 - -

576 576
lnputs put~

Fig. 3. The GFI1 switch.

GF11 1177

example, the machine can be configured as a hypercubic lattice with an
arbitrarily chosen dimension d and arbitrarily chosen sizes in each direc-
tion. To do this requires 2d switch settings. Setting 1 passes data from each
processor to its nearest neighbor in the positive 1-direction, setting 2 passes
data to the neighbor in the negative 1-direction, setting 3 passes data in the
positive 2-direction, and so on. The only limit is that the number of
processor nodes must be no greater than 576. This in effect limits d to nine
or less since 2 9-- 512. All sorts of irregular coupling schemes can also be
used.

The switch makes the machine's communication quite flexible and
allows it to work effectively on problems defined on a wide range of dif-
ferent lattices. The switch also provides a convenient means of replacing
failed processors by spares. All processors are always physically connected
to the switch. The inactive ones have merely not been loaded with data and
are never allowed, by a choice of switch setting, to send or received data
from an active processor. To remove a failed processor and replace it with
a spare, we simply modify the switch setting data in the switch's memory so
that data which was originally sent to and from the failed processor is now
sent to and from its replacement. To permit inexpensive recovery from
failures, the machine's full configuration will be run onto disk every so
often (every few hours or so). When a failure is found, the switch setting
will be changed and the machine reloaded with the most recent correct
checkpoint file and started again. Another way to replace failed processors,
of course, is by physically reconnecting wires. This is more time-consuming,
however, and less reliable. Every time cables are moved, you run the risk of
breaking some and thereby introducing still more problems to correct.

5. CONTROLLER

As mentioned earlier, the control signals for the processors and the
switch come from a single central control unit. The controller is shown in
Fig. 4. The main requirement on the controller is that it must produce over
220 bits of control signal every 50ns. This immediately rules out a
microprocessor or moderate-size group of microprocessors. A special pur-
pose high-speed controller could be built to compute the control signals on
the fly, but this would be a major undertaking and might require com-
promises, such as a choice of instruction set, which would limit the
machine's flexibiility. The procedure we adopted instead is to generate
almost all of the required control signals in advance and place the result in
a large central microcode store. The microcode store is divided into address
storage and instruction storage, both of which are shown in Fig. 4. The

1178 Beetem, Denneau, and Weingarten

Control
CPU

C ~ 1 7 6
Interfae

Instruction
Microcode

Address ~ Address]
Microeodel I RelocatiOnand REMAP

Data + Status Communication

To p r o c e s s o r s
a ~ S ~ i t c h

> r o ~ o c e s s o ~ s

> To OFII array
a~d S ~ i t c h

Fig. 4. The GFI1 central controller.

maximum total capacity of the microcode store will be 4 • 10 6 256 bit con-
trol words.

Used only once, the total stored microcode will run the machine for
only 200 ms. This limitation is circumvented by using the microcode as a
collection of separate subroutines each of which can be called by itself and
each of which has variables for addresses rather than absolute memory
locations. The address variables in the address store are then converted
into real addresses by the address relocation hardware shown in Fig. 4.
In a typical scientific applications such as QCD calculations, the time-
consuming work is contained in inner loops which are repeated a large
number of times with only the loop index altered. For G F l l this can be
done by cycling through a single microcode routine with the address
relocation hardware set differently on each cycle.

The relocation hardware can affect two different types of
modifications. The addresses for SRAM can be relocated by adding a base
address from any one of 1024 relocation registers. The resulting address
can then be remapped through a look-up table. This table can be used, for
example, to convert base shifts from the first relocation stage into periodic
shifts through arrays with periodic boundaries.

The selection of microcode subroutines, loading of relocation registers
and control of the remap look-up table are all done through the control
interface by the control CPU. An IBM PC/AT will be used as the control

GF11 1179

CPU. If the microcode subroutines are long enough (several hundred
instructions or more) the PC/AT has enough time while each subroutine is
executing to set up the subroutine to follow.

6. S O F T W A R E

Generating the microcode for GF11 by hand would be impossible. The
control word is too large, over 220 bits, and the processor's function and
pipeline skews are too complicated for anyone to manipulate directly. On
the other hand, we did not want to invent a new high-level language and
compiler. The alternative approach we have chosen uses Pascal on the host
machine and on the control CPU as our high-level language.

G F l l software comes in two parts: microcode subroutines and a
master calling program. The master program runs on the control CPU and
is a conventional Pascal program augmented with calls to special purpose
procedures. These procedures communicate with the control interface to set
up address relocation, start and stop microcode execution, and transfer
data and the load module between the control CPU and the microcode
and processor memories. Microcode subroutines are created using Pascal
on an IBM 3081 host. The code creation program looks almost like a
program which causes the host to do the calculation intended for G F l l .
But in place of Pascal + or * arithmetic operations which would cause
arithmetic on the 3081, we have procedures we have written with names
like ADD and MULT. The result of these procedures is to create a descrip-
tion of the actions needed on GF11 to do an add or multiply, respectively.
More precisely, a microcode generation program run on the 3081 yields a
file containing the operation tree required on G F l l . The operation tree is
then passed to an optimizer which packs it into G F l l control words as
tightly as possible to complete the required work in the smallest number of
machine cycles. The corresponding optimal microcode is then ready to be
loaded into the G F l l controller's microcode store. For typical pieces of
QCD computation, which we have examined in detail, the optimized
microcode achieves over 90% utilization of the GF11 arithmetic units.

Crucial to sustaining high utilization of the arithmetic units across a
full program is our ability to divide any problem into fairly large units of
microcode with of the order of hundreds of operations in each subroutine.
Since much of the machine's operation has rather deep pipelines, as much
as 20 or 30 stages deep in some places, shorter units of microcode loose
efficiency to pipeline start-up and shut-down overhead. This is a problem
encountered also in conventional vector machines. Here, however, we
require no special vector structure for our algorithms to obtain efficient

1180 Beetem, Denneau, and Weingarten

microcode. We can obtain high utilization by packing the microcode with
arithmetic done on an arbitrarily scattered set of data located anywhere in
a processor's memory.

7. Q C D

This completes the description of GF11. In this final section we briefly
discuss how a typical QCD problem can be mapped onto GF11.

A typical QCD calculation is the evaluation of hardon masses and
other parameters in the full theory including the vacuum polarization
arising from virtual quarks. Some of the first algorithms suggested for this
problem are given in Refs. 5 and 6. An improved version of the algorithm
of Ref. 5 was given recently in Ref. 7, and a related method proposed
independently in Ref. 8. Based in part on the results of Ref. 9, we suspect
that the fastest methods presently available are the algorithms of Refs. 7, 8.

For all of these algorithms the basic setup for lattice QCD is essen-
tially the .same. The theory is defined on s o m e N 4 hypercubic lattice with
periodic boundary conditions. On each nearest-neighbor link (x, y) is
defined a matrix U(x, y)e SU(3) representing the chromoelectric field. On
each sight x is defined a 12-component complex vector ~b~(x) related to the
quark field and an auxiliary 12-component complex vector O~(x). We will
not give a full definition of lattice QCD or discuss how physical quantities
can be extracted by the various algorithms of Refs. 5-8. It turns out,
however, that for the algorithms of Refs. 5, 7, and 8, essentially all of the
arithmetic is spent solving an equation of the form

M.b(X, y) Oh(Y) : eka(X) (7.1)
b_v

for the field qJ~(x) with ~b~(x) given. The matrix Mob(x, y) is nonzero only
for a pair of sites x and y which differ by at most one lattice spacing and is
determined by U(x, y). Equation (7.1) can be solved conveniently by either
a Gauss-Seidel iteration or the conjugate gradient algorithm.

At present, unfortunately, we do not know how many times the
algorithms of Refs. 7 and 8 will have to solve (7.1) to calculate hadron
masses. Therefore, we do not know what size lattice GF11 will be capable
of handling. As a result of Ref. 9 we do have a pretty good estimate,
however, of the amount of work which would be required using the
algorithms of Refs. 5 and 6. For either of these methods, GF11 would be
capable of calculation on a lattice of size 6 4 o r perhaps 8 4. Thus, for the
methods of Refs. 7 and 8, we expect to be able to run on a lattice of at least

GF11 1181

Table I. GF11 Configuration for Various
QCD Lattices

Lattice segment GF11 peak speed
QCD lattice Processor lattice in each processor in Gflops

64 63 X 2 3 8.64
84 83 83 10.12

104 102 X 5 2 X 10 10.0
124 63 X 2 23 X 6 8.64
164 83 23 X 16 10.12
184 63 X 2 33 X 9 8.64
204 102 • 5 22 X 4 • 20 10.0
224 222 222 9.68
244 83 33 X 24 10.12
284 28 X 42 72 X 28 8.96
304 102 X 5 32 X 6 X 30 10.0
324 83 43 X 32 10.12

this size. The largest lattice for which we will have memory space on GF11
will be 324 . Where in the range from 64 to 324 we will actually want to do
calculations is not yet clear. With this uncertainty, the GF11 switch turns
out to be a great advantage. By choosing the correct set of permutations
for the switch memory, we can connect up G F l l ' s processors in a wide
range of different lattices and thereby solve (7.1) efficiently for many dif-
ferent choices of QCD lattice. Table I shows how GF11 can be configured
for various different QCD lattices. The first column shows the QCD lattice
dimensions and the second shows the GF11 processor lattice. In each case
the GF11 switch will be used to realize nearest-neighbor connections with
periodic boundary conditions among the GF11 processors. Each processor
will then be assigned some contiguous segment of the QCD lattice to store
in its memory. This is shown in the third column of Table I. Column 4
shows the peak arithmetic rate which can be obtained with the
corresponding lattice of GF11 processors.

Let us now consider the solution of (7.1) on a typical lattice, say 244,
in a bit more detail. For a 244 lattice, according to Table I, we use 512
processors indexed as an 83 array. Each processor is given the task of
managing the data for a 33 X 24 contiguous segment of lattice. The data for
~,(x), Oa(x), U(x, y), and data sets needed as working space for a con-
jugate gradient algorithm occupy too much space to fit into the processor's
SRAM and are therefore placed in DRAM and brought down to the
SRAM as needed. The conjugate gradient algorithm spends essentially all

1182 Beetern, Denneau, and Weingarten

its arithmetic on three routines. The first of these, MUL(A, B), takes a vec-
tor A a(x) as input and returns

Ba(x) = ~ M~(x, y) Ab(y) (7.2)
b,y

The second routine, MULAD(A, B), does the same as MUL(A, B) but for
the adjoint of the matrix Mab(x, y). The third routine, LIN(A, B, C, s),
takes A~(x), Ba(x), and s as inputs and returns the linear combination

Ca(x) = Aa(x) + sBa(x) (7.3)

To implement MUL(A, B), data in each processor is brought from the
DRAM into SRAM in slices 33 each, with three adjoining slices present in
SRAM at any time. To find Ba(x) according to (7.2), data for mab(X , y)
and Ab(y) for some of the nearest-neighbor y can be obtained from the
base processor assigned the site x, and data for the remaining y can be got-
ten from nearest-neighbor processors through the switch. All processors
will travel over their segments of the QCD lattice in lock step. In this case,
the single instruction stream sent down from the central controller does not
even need any processor-dependent modulation using condition codes from
the eight-bit condition code memory. When all the sites on a particular 33
slice have been finished in the processors, each processor will fetch a new 33
slice from DRAM to SRAM, and the evaluation of (7.2) on a new slice will
be started. A detailed examination of the arithmetic required for this
process shows that for each word of I/O required of the DRAM, the
arithmetic units will do 20 operations. Since 20 operations takes 1000 ns
while one I/O takes only 200 ns, this process will not be obstructed by
dynamic RAM speed. A simulation of the register allocation problem for
MUL shows that we will be able to obtain close to 95 % of the peak rate
listed in Table I. Identical results hold for MULAD. A similar analysis can
be done for LIN. Here we find we are limited by DRAM speed and will
obtain only about 20 % of the peak. Since almost all of the arithmetic for
the solution Of (7.1) by conjugate gradient is spent in MUL and MULAD,
however, we find a sustained rate still in the neighborhood of 90 % of the
peak.

Since almost all the arithmetic for the algorithms of Ref. 7 and 8 is
spent in the conjugate gradient, we expect an overall sustained rate again
in the neighborhood of 90 % of peak. For a 244 lattice we arrive at a sus-
tained rate near 9 Gflops. This whole discussion could be repeated almost
identically for the other lattices in Table I larger than 124. For lattices of
size 124 and smaller we are not forced to work with DRAM to solve (7.2),
and slightly higher fractions of the peak rates in Table I can be sustained.

GF11 1183

R E F E R E N C E S

1. J. Beetem, M. Denneau, and D. Weingarten, 1EEE Proceedings of the 12th Annual Inter-
national Symposium on Computer Architecture (IEEE Computer Society, Washington,
D.C., 1985).

2. N, Christ and A. Terrano, IEEE Trans. Comput. C 33:344 (1984); C. Seitz, J. VLSI Comput.
Syst. 1, no. 3 (1984).

3. R. Brower, R. Giles, and G. Maturana, Boston University preprint (1985).
4. V. Benes, Bell Syst. Tech. J. 43:1641 (1964).
5. D. Weingarten and D. Petcher, Phys. Lett. B 99:333 (1981).
6. F. Fucito, E. Marinari, G. Parisi, and C. Rebbi, Nucl. Phys. B 180:369 (1981).
7. A. Ukawa and M. Fukugita, Phys. Rev. Lett. 55:1854 (1985).
8. G. Batrouni, G. Katz, A. Kronfeld, P. Lepage, and K. Wilson, Phys. Rev. D 32:2736 (1985).
9. D. Weingarten, Nuel. Phys. B 257:629 (1985).

